

Overview of NEMSIC project: low power integrated sensing with Nano-Electro-Mechanical devices

Adrian M. Ionescu Ecole Polytechnique Fédérale de Lausanne

Outline

- Objectives, partnership and ambition.
- Technology and devices:
 - Thin film SOI NEMS resonators for integrated low power sensing.
 - Functionalization of silicon-based sensors.
 - Power management with NEM-FETs.
- Technical progress: status and highlights.
- Conclusions and perspectives

NEMSIC objectives

Hybrid Nano-Electro-Mechanical / Integrated Circuit Systems for Sensing and Power Management

- Technological objectives
- Sensor and device objectives
- NEM-CMOS application objectives

Technological objectives

- TO1: Development and validation of a NEM) technology platform for both sensing and power management applications, at CEA-LETI.
- **TO2**: Combination of NEM silicon nanowires device with CMOS in true hybrid technological demonstrators.
- **TO3**: Fast prototyping for Movable-Gate FET operated in power management applications.
- TO4: Technology for functionalized layers and their integration on the NEM technology platform on movable NEM gate or insulator levels, dedicated to gas and bio-molecule sensing.

Sensor objectives

- **SDO1:** Design and fabrication of dedicated NEM sensors for gas sensing based on vibrating structures able to push the sensitivity to extreme values.
- **SDO2**: Design and fabrication of dedicated Bio-NEM sensors.
- SDO3: Design and fabrication of power management (sleep transistor) NEM-FET switch.

System objectives

- SYSO1: Realization of a full hybrid sensor/CMOS interface low power smart sensor systems exploiting NEM resonant arrays for gas (COx, NOx, SOx) sensing.
- **SYSO2:** Realization and experimental validation of a Bio-NEMS system for real-time measurements of analytes such as DNA or proteins.
- **SYSO3:** Experimental benchmarking of power savings at circuit and system level by use sleep NEM-FET transistor with reliable operation.

Partnership

- **EPFL**, Switzerland
- TUD, The Netherlands
- IMEC-NL, The Netherlands
- **SOU**, United Kingdom
- **CEA-LETI**, France
- **SCIPROM**, Switzerland
- IMEC, Belgium
- HON, Romania
- UNIGE, Switzerland replaced by HiQScreen.

WP1: highlights

 Effects of functionalisation on the conductance of SiNW sensor devices (SOU, IMEC-BE)

NH₂ Self-assembled Monolayer (NH₂ SAM) + Glutaraldehyde(GA) + Biotin

NH₂ SAM coating

Functionalisation: conductance decreased

WP1: highlights

 Development of selective functionalisation technology on SiNW devices:

 $_{\odot}$ Functionalisation on SiO₂ surface for bio-sensing (IMEC-BE) $_{\odot}$ Functionalisation on Si-H surface for gas sensing (IMEC-NL)

- Only NWs were decorated by Au NPs (15 nm)
- Amino functionality is only on the NWs

S. Armini., Invited Talk at Annual Meeting of COST Action MP0802

WP1: highlights

 Selective surface functionalization on <u>suspended</u> Si NWs (IMEC-NL, CEA-LETI, SOU)

SEM characterization of the Si NWs after ebeam selective NH_2SAMs functionalization followed by Au NPs decoration of the NH_2 groups.

WP2: highlights

 Hybrid FEA based optimization of FD SOI NEMFET: feedback to fabrication platform and tapeout by EPFL.

	symbol	Min. Value	Target	Max. Value	Unit
SOI thickness	t _{SOI}		30		nm
Buried Oxide thickness (BOX)	t _{BOX}		145		nm
HfO ₂ thickness	t _{ox}		3		nm
Gap	g	10		50	nm
Gate length – beam width	L _{ch} =w _{beam}	150		600	
Beam length	l _{beam}	150		50000	n h m
Gate thickness (TiN+poly-Si)	tgate		110		nm
Beam anchors minimum			2		μm
dimensions					

WP2: highlights

- Implementation of the compact model for the Fully Depleted SOI NEMFET based on the Berkeley's BSIM Independent Multiple Gate (IMG) compact model for double-gate (independent gate) devices.
- Complete parameter extraction of the FD NEMFET compact model performed for a complete design space exploration.
- First version of the Agilent ADS
 Design Kit (DK) based on the Verilog A compact model for FD SOI NEMFET
 was released

11

WP2: highlights

Power components, energy and the energy-delay product for 3 major design implementations:

- Reference
- Hybrid
- Leakage-enhanced

NEMFET low leakage power offers a 2.75x advantage in the OFF power over the classic high-VT transistors.

Implementation type	ON power [mW]	OFF power [nW]			Power-up	Total	Energy-
		STs	Always- on cells	Total	energy [pJ]	energy [µJ]	Delay Product [µJ·ns]
Reference	5.0340	56.28	26.02	81.28	48.04	9.05	62.01
Hybrid	5.0339	4.52	26.02	29.52	37	8.61	56.47
Leakage- Enhanced	4.7	4.52	0.364	4.884	37	8	51.48

Table 1 – Pow	ver, energy a	nd energy-d	elay results
---------------	---------------	-------------	--------------

Active time = 1.73 ms, Idle time = 993.35 ms, Transition time = 5.32 ms @ 150 MHz

Always-on cells = *Power management controller and isolation cells*

WP3: highlights

2MHz MEMS Oscillator design and validation (IMEC-NL)

WP3: highlights

 VB-FET small signal model experimentally calibrated and specific features (phase shift and gain) captured in model (EPFL, IMEC-NL) able to serve CMOS-NEMS circuit design

WP4: highlights

• Investigation by IMEC-BE of nanoscale forces relevant for the designed devices (SiO2 plates): VdW relevant.

 Compare with estimated electrostatic force/area in FD SOI NEMFETs: 0.03-0.3 nN/µm²

WP4: highlights

 Successful mixer lock-in amplifier measurement setup by EPFL to avoid the effect of parasitic feedthrough capacitance, enabling high frequency measurements in vibrating nanostructures.

Highlight WP4 & demo: RF front-end receiver based on RB- FinFETs

Frequency selective demodulation of audio signal using the array of RB-FinFETs is successfully demonstrated

This work is submitted to ISSCC 2012

WP5: highlights - prototyping

Vibrating body FET of EPFL operating from weak to strong inversion with sub-nW power consumption demonstrated and reported at IEDM 2010. 1E-6 $\frac{1}{1}$ $\frac{1}{1}$

WP5: highlights – techno platform

Technology platform for NEMS-CMOS devices @ CEA-LETI:

- Finalization of NEMS device fabrication on both sensor and power management platforms: no further delay in the project due to highly prioritized technology processing at LETI, in line with the new DOW.
- Compatibility with CMOS ICs fully proven experimentally
- High frequency resonator sensors functional in various designs: publications to follow!
- NEM-FET switch fabricated, basic functionality but high leakage, characterization work in progress

WP5: highlights

- Fully functional NEM resonators: cross-beam (CEA-LETI).
- Also experimental demonstrator at the 3rd review.

WP5: highlights Y3

Vibrating Body FET (VBFET)

Fabricated designs: - EPFL - SOU Collaborative design platform implemented by CEA-LETI

LSGFET

Conclusion and Roadmap

- The NEMSIC project made significant progress towards both low power integrated sensing and power management objectives
- NEMSIC contributed to establish a new application roadmap for integrated NEM sensors and power management.

